
Journal of Engineering Mathematics 19 (1985) 139-155. 
© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands. 

On the effects of non-linearity in free-surface flow about a 
submerged point vortex 

L.K. FORBES 

Department of Mathematics, Kansas State University, Manhattan, KS 66506 USA * 

(Received December 6, 1984) 

Summary 

Two-dimensional free-surface flow about a point vortex in a stream of infinite depth is investigated. The 
non-linear problem is formulated in terms of an integrodifferential equation on the exact, unknown location of 
the free surface, and this equation is then solved numerically. The non-linear results are compared with the 
predictions of linearized theory and, for positive circulation, it is found that the latter may under-estimate the 
drag force significantly. For negative circulation, the linearized theory grossly over-predicts the value of the wave 
resistance, which apparently even becomes zero in a limiting configuration. 

1. Introduction 

This paper is concerned with the effects of non-linearity upon two-dimensional flow about 
a point vortex immersed beneath the surface of a running stream of infinite depth. The 
fluid is assumed to be ideal, so that a potential flow problem with non-linear boundary 
conditions upon a free surface is required to be solved. 

Flows due to the motion of mathematical point singularities in a fluid possibly 
represent the simplest of all problems in hydrodynamics in which a free surface is 
involved, and consequently, their study has had a long history. Traditionally, these 
problems have been linearized under the assumption that the strength of the disturbing 
singularity is small, and the solution obtained by integral-transform techniques. The 
solutions for point sources, vortices and dipoles in fluids of finite and infinite depth are 
reviewed by Wehausen and Laitone [1], and the case of fluid of infinite depth is 
considered in detail by Kochin, Kibel' and Roze [2]. 

The development of the digital computer has enabled modern-day researchers to 
embark upon purely numerical solutions to many non-linear free-surface problems, and a 
recent review article by Yeung [3] is devoted to this subject. Solutions to the non-linear 
equations describing flow about submerged point singularities have also been undertaken 
recently. Hess [4] sought to solve the same problem as is considered here, and achieved 
limited success by making use of a surface-singularity technique. However, the conver- 
gence of his iterative scheme for solving the non-linear integral equation of the motion is 
in some doubt; this would appear to be due to the eigenvalues of the integral equation 
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forming a continuous (uncountable) distribution along the entire negative real axis in the 
complex eigenvalue plane. This is discussed in greater detail by Forbes [5]. Salvesen and 
von Kerczek [6] solved the non-linear equations for flow about a point vortex in a stream 
of finite depth using a finite-difference method, and their results, which are in substantial 
agreement with our own, will be cited frequently in this paper. Since their method involves 
the distribution of numerical mesh points throughout the entire fluid, it cannot be used in 
the present context of infinite fluid depth, unless at least some intermediate change of 
variables is employed. 

In the present paper, a boundary-integral formulation in the plane of the physical 
variables is employed, and is similar to the approach adopted by Miksis, Vanden Broeck 
and Keller [7] in that an arclength parametrization of the free surface is utilized. Details of 
this formulation are provided in Section 2. Note that the inverse formulation of Forbes 
and Schwartz [8], for example, cannot be used here because of the presence of a stagnation 
point at an unknown position within the fluid, at which the inverse transformation would 
become singular. The method employed in this study is therefore available in a much 
wider class of problems than that used by Forbes and Schwartz, yet with no loss of 
numerical efficiency. In Section 3 we review the linearized theory, and Section 4 contains 
the algorithm used for the numerical solution of the non-linear problem. Results are 
presented in Section 5 and compared with the predictions of linearized theory, and a 
discussion in Section 6 concludes the paper. 

2. Formulation of the problem 

We consider a two-dimensional stream of infinite depth flowing from left to right with 
uniform speed c far upstream, and subject to the downward acceleration g of gravity. A 
cartesian coordinate system is defined such that the y-axis points vertically, and the 
x-axis, located at the level of the free surface far upstream, points in the overall direction 
of the flow. A vortex of strength K is located a distance H beneath the origin, and the 
free surface generally possesses a uniform train of Stokes waves, radiating downstream to 
infinity. 

The problem is non-dimensionalized using H and c as reference length and speed, 
respectively. The function ~(x), which describes the elevation of the free surface, is 
therefore made dimensionless by reference to H, and the velocity potential ~ and 
streamfunction qJ are referred to the product cH. A definition sketch of the non-dimen- 
sional flow is given in Figure 1. The two independent dimensionless parameters of the 
flow are the Froude number F = c(gH) -1/2 and vortex strength c = K(cH) -1. 

The fluid is assumed to be incompressible and inviscid, and to flow without rotation. 
Consequently, the velocity potential and streamfunction satisfy the Cauchy-Riemann 
equations 

~x = 4'y, q~y = - qJx (2.1) 

everywhere in the fluid except at the vortex itself. Equations (2.1) imply that the complex 
potential f =  ~ + i~b should be an analytic function of z = x + iy, except at the vortex, 
where 

ic 
f - - , z+T~ ln ( z+ i  ) as z ~ - i .  (2.2) 
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Figure 1. The non-dimensionalized problem and coordinate system. 

Far upstream, the fluid obeys the radiation condition 

f--* z as Re( z } --* - oo, (2.3) 

and at the free surface y = 71(x), it is necessary to impose the kinematic boundary 
condition 

d~ 
q'X~xx = q'Y on y = *l(x) (2.4) 

and the Bernoulli equation 

1 ~ '2/ . t2  __ ½F 2 o n  (2.5) 

The above problem is reformulated in terms of an integrodifferential equation along 
the unknown free-surface location, using Cauchy's Integral Formula and the residue 
theorem. Consider the function 

d f  
X ( Z ) = ~ z z -  1 (2.6) 

which vanishes infinitely far upstream, by equation (2.3), and also at infinite depm within 
the fluid, and which remains bounded far downstream. This function is analytic every- 
where in the fluid except at the vortex, z = - i ,  where it has a simple pole, and 
consequently, 

- z = 2rri R e s { - i } .  (2.7) 

The positively-oriented contour F in equation (2.7) is sketched in Figure 2. It consists of 
the entire free surface except the point z which is by-passed with a semi-circle of 
vanishingly small radius, and a semi-circle at infinity. 
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Figure 2. The contour F in the complex z-plane. 

Let the free surface be parametrized by the arclength t, and suppose that the point z on 
the surface is obtained when t = s. Now the contribution to the integral in equation (2.7) 
from the semi-circle at infinity is clearly zero, since X(~) defined in equation (2.6) 
vanishes along this contour. The contribution from the semi-circle of vanishingly-small 
radius which is centred at the point z in Figure 2 and traversed clockwise is -i~rx(z); 
consequently, equation (2.7) becomes 

i~rx(z(s)) = _ f ~  X(Z(t))z '(t)dt - ~  z -~- - -z - -~  2~ri R e s { - i } ,  (2.8) 

in which the improper integral is to be interpreted in the Cauchy Principal-Value sense. 
It remains to evaluate the residue term in equation (2.8). Since the pole of the function 

(~ - z)- lx(~)  at ~ = - i  is simple, we have 

(~ + i)x (~) Res { - i} = lim 
~ - - i  ~ - - Z  

which, in view of equations (2.2) and (2.6), becomes 

Res{ - i }  = 2¢r(z + i)" (2.9) 

Consequently, equation (2.8) yields 

¢ 1 ,~o X(z( t))z ' ( t )d t 
X(z(s ) ) - -  i~r(z(s)+i)  i~r J-oo z-~----~(s) " (2.10) 
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The desired integrodifferential equation is obtained by taking the real part of equation 
(2.10). Firstly, however, we note that in terms of arclength s, the kinematic surface 
condition (2.4) becomes 

~ ,  = 0 (2.11)  

and Bernoulli's equation (2.5) gives 

~ ~2~.2 + y  _ ½F 2 (2.12) 
~ ' / ' s  - -  • 

In addition, the definition of arclength requires that 

x~Z +y~--  1. (2.13) 

In view of equations (2.11) and (2.13), the real part of equation (2.10) gives rise to the 
singular integrodifferential equation 

q,'(s)x'(s)-1 

, ( y ( s )  + 1) 

~r[x2(s)+(y(s)+ 1) 2 ] 

1 ~ [~ ' ( t ) -x ' ( t )][y( t ) -y(s)]  +y'( t )[x( t ) -x(s)]  dt. (2.14) 
+ - ~ L ~  [x( t )_x(s)]2+[y( t )_y(s)]  2 

The unknown functions x(s), y(s) and ~(s) at the free surface are therefore obtained by 
solving the coupled non-linear equations (2.12)-(2.14), subject to the radiation condition 
(2.3). 

Once the above unknown functions have been obtained, the wave drag D and lift L 
experienced by the point vortex may be computed from Blasius's first formula (see 
Batchelor [9], page 433) 

D - i L = ½ i F 2 ~  ( d f ]  2 • 'c~ dz ] dz. (2.15) 

Here, C denotes any positively-oriented simple closed contour lying wholly within the 
fluid and having the point vortex in its interior, and D and L have been made 
dimensionless with respect to pgH 2, where p is the fluid density. 

Suppose that z 0 is an interior point in the fluid, lying on contour C. Cauchy's integral 
formula and residue theorem now give 

1 x(t)dt X(Zo) + Res{-i} (2.16) 

where contour F 0 is the same as the contour F in Figure 2, except that the small 
semi-circle bypassing surface point z is now unnecessary. The contribution from the 
semi-circle at infinity is again zero, and the residue is given by equation (2.9), so that 
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equation (2.16) becomes 

, 1 f~_ X(Z(t))z'(t)dt 
X(Zo) 2rri(z0 + i ) 2rri ~ z(t)-Zo 

This formula at once yields the derivative df/dz required in equation (2.15), and we write 

d f  + i f (z )  (2.17a) 
dz 2rri(z + i) 

for all internal points z = z0, where the function 

1 f ~  X(Z(t))z'(t)dt 
~ ¢ ( z )  = 1 -  ~ - ~  ~ z(t)-z (2.17b) 

is analytic everywhere in the fluid. Substituting equations (2.17) into (2.15) and evaluating 
the integral by the calculus of residues yields 

D - iL = - i c F 2 ~ ( - i ) .  (2.18) 

The real and Imaginary parts of equation (2.18) finally give the formulae 

=cF2[ °° [ep'(t)-x'(t)]x(t)-y'(t)[y(t)+ l] dt (2.19) 
D Err J_ oo x2( t )  + [ y ( t )  + 1] 2 

and 

+ ¢F 2 / - ~  [ ~ ' ( t ) - x ' ( t ) ]  [ y ( t )  + 1] +y'(t)x(t) 
L=¢F 2 -~- j_~  x2(t)+[Y(t)+ l] 2 dt, 

where equations (2.11) and (2.13) have been used. 

(2.20) 

3. The linearized theory 

If the dimensionless vortex strength c is small, the solution f(z) to equations (2.1)-(2.5) 
may be developed as a regular perturbation expansion in powers of ~, retaining only 
first-order terms. The resulting equations are then linear, and can be solved in closed 
form. This linearized solution is well known and is described fully by Kochin, Kiber and 
Roze ([2], page 476) and Wehausen and Laitone ([1], page 489). For ease of reference, we 
shall summarize this solution here. 

When c is small, the complex potential is given by the expression 

f ( z )=z+-~[ln(z+i)- ln(z- i )]+ieF2 1~-- ~ c exp ( 
i(z - i) ) + 

(3.1) 
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and the linearized formula for free-surface elevation is 

, F  2 /.oo e - k c o s ( k x ) d k  
7/(x) J0 -z 

- ,  e-l/F2 sin(~22 ) + O(,2) .  (3.2) 

An alternative expression for the free-surface elevation is obtained by transforming the 
improper integral in equation (3.2) using contour integration as described, for example, by 
Havelock [10]. This results in the formula 

, F  2 foo e-mlxl[mF 2 cos m - sin m]dm 
J0 T 

- 2 ,H(  x ) e-1/r~ sin(-~T ) + O( {2 ), (3.3) 

where H(x)  is the Heaviside unit-step function having values 0 for x < 0 and 1 for x > 0. 
From equation (3.3) it is clear that 

, / ( x ) ~ - A ,  sm + O ( ,  2 ) as x ~ o o  

where 

A 1 = 2, e -1/F2 (3.4) 

is the linearized wave amplitude. 
For the wave resistance of the vortex, linearized theory gives 

D = , 2  e -2 / r :  + O(,3)  : ~ A  2 + O(,3) ,  (3.5) 

as expected from conservation of energy. The linearized lift force acting on the vortex is 

,2F2 ,2 -2-F 2 ./ 2 '~ 
L = { F  2 -  4----~-+-~-e / EI[-~-T)+O(,3) ,  (3.6) 

where Ei denotes the exponential integral defined by Abramowitz and Stegun ([11], page 
228). 

4. Numerical methods 

In this section we outline the numerical method used for the approximate solution of the 
non-linear equations (2.12)-(2.14) at N equally-spaced points Sl, s 2 . . . . .  SN separated by 
an amount h = s / -  sj_ 1, j = 2 . . . . .  N. Points s 1 and s N are supposed to correspond 
approximately to - oo and oo respectively. The numerical method used is a modification 
of that employed by Forbes and Schwartz [8]. 
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The domain of integration of the integrodifferential equation (2.14) is first truncated 
upstream at sl and downstream at S~v, and the equation is then evaluated at the N -  1 
midpoints Sk_l/2, k = 2 . . . . .  N. Because the singularity in the integrand now occurs 
symmetrically between mesh points, the integral may be approximated by the trapezoidal 
rule, ignoring the singularity as described by Monacella [12]. 

Newton's method is used to solve for the vector of unknowns [y~, yd, . . . ,  y;v] r. 
However, the integrodifferential equation only provides N -  1 equations since it was 
evaluated at the midpoints xk_ l /2 ,  k = 2  . . . . .  N, and so an extra equation must be 
provided. This is, of course, the radiation condition (2.3). 

The Newton's method algorithm for the solution of the nonlinear equations is therefore 
as follows: 

Step 1: Satisfy the radiation condition (2.3) and Bernoulli's equation (2.12) by specifying 

Yl = Y~ = 0, 

x~ -- q~ = 1, (4.1) 

X 1 = qb~ = S 1 . 

Make an initial guess at the unknowns y~ . . . . .  y~; these are usually set to zero. 

Step 2: Compute the remaining functions using equations (2.12) and (2.13) and 
trapezoidal-rule integration. Thus 

x~ (1 '2~1/2 
= - - Y k )  , 

x k = Xk_ 1+ ½h(x~ + x~_l), 

+ lhZ , , , Y k = Y k - 1  ~ I, Y k + Y k - 1 )  

(~k ( 1  ~ " ' - ' 2 " x l / 2  
, = --  Z y k / r  ) , 

q_ t 
COg eOk-l+½h(eO'k q>k-1), k = 2  . . . . .  N. 

Step 3: Obtain function values at half-grid points by interpolation: 

x~_i/2 = ~(xk_,  + xk), 

Y k - 1 / 2  = ½ ( Y k - 1  + Y k ) ,  

t 1 t X t 
X k - 1 / 2  = 7 ( X k - 1  ÷ k ) ,  

t __1 t ¢ k - 1 / 2  - ~ ( ¢ k - 1  + ¢ ~ ) ,  k = 2 . . . . .  N .  

Step 4: 

(4.2) 

(4.3) 

Compute the vector of residual errors in the satisfaction of the discretized 
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integrodifferential equation (2.14): 

E _ h  ~ w j  
k - - ~  j= 1 

( - + y ; ( x j -  X _l/2) 
2 )2 

( Xj -- X k _ l / 2 )  -t- (y j  - Yk-, /2 

c(yk_l/2 + 1) 
+ + + 1) 2] 1 -  

k = 2 . . . . .  N. (4.4) 

Here, wj denotes the trapezoidal-rule weights, w 1 = w u = 1 / 2  and wj = 1, j = 2 . . . . .  N - 1. 

Step 5: Compute a correction vector [A2, A 3 . . . . .  Au]T by solving the matrix equation 

~]  - E k ,  k = 2 . . . . .  N .  (4 .5)  
j=2t J 

The derivatives are computed numerically, by forward differencing. The vector 
[A 2, A 3 . . . . .  A s ] r  is added to the vector [y~, y~ . . . . .  y~v] r to create a new approximation 
to the derivatives y~, . . . ,  y~ and the programme is returned to step 2, unless the Euclidean 
norm IIEII of the vector of residual errors is sufficiently small, at which point the 
programme is stopped. If the new approximation increases IIEII rather than decreasing it, 
as required, then each element of the correction vector is halved, and the step repeated. 

We have programmed the algorithm (4.1)-(4.5) in the FORTRAN language on an NAS 
6630 computer. Five iterations are typically required to obtain convergence with IIEII < 
10 -8, and when N = 141, the programme takes about 11 minutes of execution time. 

Once the values of the dependent variables are known at the surface, the formulae 
(2.19) and (2.20) for the drag and lift are evaluated by straightforward numerical 
quadrature. 

5. Presentation of results 

This chapter discusses the major differences between the predictions of the linearized 
theory summarized in Section 3 and the non-linear results obtained with the numerical 
method outlined in Section 4. It will suffice here to present results at the fixed Froude 
number F = 0.7, since the behaviour of the solution at other Froude numbers is qualita- 
tively similar. 

Figure 3 shows the drag as a function of absolute vortex strength Icl, for F = 0.7. The 
linearized result is computed from equation (3.5) and is shown as a solid line on the 
figure; note that linearized wave resistance is insensitive to the sign of c. By contrast, the 
non-linear results are strongly dependent upon the direction of flow around the vortex as 
is evident from Figure 3, in which non-linear results for positive c are indicated by 
triangles and results for negative circulation are indicated by circles. 

The non-linear results for both positive and negative circulation agree well with 
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Figure 3. The drag as a function of I~1 for F = 0.7. The linearized result ( ) is compared with non-linear 
results for positive and negative circulation, indicated by triangles and circles respectively. 

linearized theory for small values of Icl, as is to be expected, although the two sets of 
results diverge strongly as Icl is increased. For  positive circulation, ~ > 0, the non-linear 
wave drag becomes significantly larger than that suggested by linearized theory, until, at 
c = 0.4 the non-linear result is some 85% larger than its linearized counterpart. Newton's 
method did not converge for c = 0.41, and we conclude that c = 0.4 is about the largest 
value of the vortex strength for which solutions of this type exist for F = 0.7. 

The results for negative circulation in Figure 3 are perhaps a little surprising, since the 
non-linear drag is much smaller than the linearized drag, except for small Ion when the two 
results are in agreement. The same trend was noted by Salvesen and von Kerczek [6] 
although we have apparently been able to obtain solutions for much larger values of I~l 
than did those authors. Indeed, the results shown in Figure 3 are remarkable, since the 
non-linear wave resistance for negative circulation first increases with Ic[, attaining a 
maximum at about ~ = -0 .4 ,  and then decreases as Icl is increased, becoming extremely 
small at c = -0 .88 ,  which represents the largest value of It] for which Newton's method 
converged. Of course, the numerical method does not give a non-linear wave drag of 
exactly zero for c = - 0.88, but we believe that this family of solutions is ultimately limited 
by a configuration having exactly zero wave resistance. This will be discussed shortly. 

The lift is shown as a function of [c I in Figure 4, for F =  0.7. In order that the 
differences between linearized and non-linear values may be highlighted, the first-order 
contribution cF  2 has been subtracted. The linearized result computed from equation (3.6) 
is indicated by a solid line, whilst non-linear values computed from equation (2.20) for 
positive and negative circulation are again indicated by triangles and circles, respectively. 
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In contrast to Figure 3, there is rather good agreement between the linearized theory and 
the non-linear results for positive circulation over the entire range 0 ~< ~ ~< 0.4 in which 
solutions could be found, with values differing by a maximum of only about 9%. 
Agreement between linearized theory and non-linear values for negative circulation is also 
reasonable, except for very large values of Icl when the non-linear values are significantly 
smaller than predicted by the linearized theory. The maximum difference occurs at 
c = - 0.88, when the non-linear result is about 74% of the linearized value. 

The behaviour of the linearized and non-linear wave resistance in Figure 3 may be 
understood by an examination of the corresponding free-surface profiles. In Figure 5 we 
show such a profile for the case F = 0.7, c = 0.4, which was the largest positive value of 
vortex strength for which Newton's method converged. The non-linear result is indicated 
with a solid line and the linearized elevation, computed from equations (3.2) and (3.3), by 
a dotted line. Far downstream the linearized elevation is given by the sine wave (3.4) 
whereas the non-linear surface elevation is expected to consist of a regular train of Stokes 
waves, the properties of which have been documented by Schwartz [13], for example. Note 
that the non-linear waves in Figure 5 possess the usual narrow crests and broader troughs. 
The peak-to-trough height of the non-linear waves is about 60% larger than that of the 
linearized sine waves, which explains to a large degree the difference between the 
linearized and non-linear wave drag for this case, presented in Figure 3. 

Forbes and Schwartz [8] have discussed in detail the nature of the numerical errors to 
be expected from a method such as that used in this paper. For waves of moderate height, 
the errors are basically of two types. One source of error is the truncation of the domain of 
integration of the integrodifferential equation (2.14) upstream at the first point s 1. Since 
the conditions (4.1) imposed at this point do not exactly match the values of the 
dependent variables that would be obtained at s 1 from the true non-linear solution to the 

U I I I I I I I 
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O • - N 4- 
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~ _ I I I I 

. 2  . 4  . 6  . B  

Figure 4. The lift as a function of Icl for F = 0.7. The linearized result ( ) is compared with non-linear 
results for positive and negative circulation, indicated by triangles and circles respectively. 
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Figure 6. Free-surface elevations for four  different vortex strengths, at F = 0.7. Profiles are shown for c = 0.1 
( . . . .  ), 0.2 ( . . . . . .  ), 0.3 ( - . - )  and 0.4 ( ). 
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problem, the effect is that of an additional small disturbance imposed at st, and 
consequently, a spurious train of Stokes waves of very small amplitude appears upstream 
of the vortex. Such a train of numerically-produced waves is also present in the non-linear 
solution in Figure 5; it is, however, too small to be seen. The other source of error is the 
truncation of the domain of integration of equation (2.14) downstream at the last point 
s N. This may be shown to affect only the last half-wavelength or so downstream. Of 
course, the usual roundoff  and truncation errors are always present, but are only 
significant when the waves are very steep, since the curvature at the crests of such waves is 
too large to permit accurate computat ion in this region, given the relatively small number  
of free-surface grid points per wave cycle used here. 

Following Salvesen and von Kerczek [6], we contrast the free-surface profiles at F = 0.7 
obtained for several different values of the vortex strength. The results are shown in 
Figure 6, for c- -0 .1 ,  0.2, 0.3 and 0.4. As the vortex strength c is increased, the 
downstream waves increase uniformly in height, until, at about c = 0.4, a limiting 
configuration is presumably attained, in which the downstream waves possess sharp crests 
enclosing an angle of 120 ° and their steepness is approximately 0.141, as predicted by 
Schwartz [13]. Solutions of this type for larger values of ¢ would then not be possible. 

The properties of the non-linear downstream waves in Figure 6 are presented in detail 
in Table 1. These data were computed from the numerical output by  fitting a cubic spline 
S(x) through the points (x i, y~), i = 1, 2 . . . . .  N to obtain the approximate free-surface 
elevation ~l(x) -- S(x). Let the values x*, i = 1, 2, 3 denote respectively the positions of a 
trough, the next crest, and the next trough; they may be found approximately by solving 

S'(x.*,) = O, i = 1, 2, 3. (5.1) 

Equations (5.1) are solved by Newton's  method. The wavelength is then 

= x ~  - x ~ ,  (5.2) 

and the average free-surface elevation is 

1 f~3S(x)dx" (5.3) 

The cubic spline in equation (5.3) is integrated exactly. The wave steepness is approxi- 

Table 1. Properties of the downstream waves at F = 0.7, as a function of vortex strength 

h Steepness ~ X 10 3 

0 3.07876 0 0 
0.05 3.12 0.0087 0.19 
0.1 3.11 0.0185 0.44 
0.15 3.10 0.0295 0.78 
0.2 3.08 0.0418 1.19 
0.25 3.04 0.0558 1.68 
0.3 2.99 0.0719 2.24 
0.35 2.92 0.0915 2.83 
0.4 2.79 0.120 3.56 



152 

mately 

steepness = 1 [S (x~)  - S (x~ ) ] ,  (5.4) 

where ~ is given by equation (5.2). The result in Table 1 for c = 0 is, of course, taken from 
the linearized solution (3.4), for which the wavelength is 2t = 2~rF 2. 

From Table 1 it appears that the wavelength ~ first increases slightly for small (. 
Similar behaviour was noted by Salvesen and von Kerczek [6], but, as pointed out by those 
authors, this is probably evidence of a small numerical error which is more pronounced 
when the wave-slopes are small. Ultimately, however, the wavelength is a decreasing 
function of c, as is evident from Figure 6. 

The wave steepness, computed from equation (5.4), is also shown in Table 1 as a 
function of c. Extrapolating the steepness to its theoretical maximum value of about 0.141 
suggests that the maximum vortex strength for which solutions may be obtained is about 
0.42, for F = 0.7. As mentioned previously, Newton's  method did not converge beyond 
c = 0.4, presumably due to the high curvature at the wave crests. 

Table 1 also shows the mean free-surface elevation as a function of c. Because of the 
numerical error present in portions of the last wave downstream, described above, the 
average (5.3) was taken over the second of the downstream waves in Figure 6. We suspect 
that the mean free-surface elevation for this wave cycle is slightly below that of the Stokes 
waves which must be formed infinitely far downstream, and that the values of ~ in Table 
1 are therefore a little low. However, the Table clearly indicates that 7/ is a uniformly 
increasing function of c. Note that the opposite trend is often the case in water of finite 
depth; for a discussion of this case the reader is referred to Benjamin [14], Salvesen and 
yon Kerczek [6] and Forbes [15]. 
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F i g u r e  8. F r e e - s u r f a c e  e l e v a t i o n s  f o r  f o u r  d i f f e r e n t  v o r t e x  s t r e n g t h s ,  a t  F = 0 .7 .  P r o f i l e s  a r e  s h o w n  f o r  ~ = - 0 . 2  

( - -  - -  - - ) ,  - 0 . 4  ( . . . . . .  ), - 0 . 6  ( - . - )  a n d  - 0 . 8 8  ( ). 

We turn now to perhaps the more interesting case of negative circulation. Figure 3 has 
already revealed that the wave resistance becomes essentially zero when ~ = -0 .88  and 
F = 0.7, and the linearized and non-linear wave profiles for this case are shown in Figure 
7. Here it is evident that the difference between the two wave profiles is extreme indeed. 
Linearized theory predicts a rise in the free surface slightly downstream of the vortex, 
followed by a train of sinusoidal waves of very large amplitude. B y  contrast, the 
non-linear free-surface profile is essentially symmetrical about the y-axis, possessing 
downstream waves of very small amplitude which accounts for the small non-linear drag. 

By analogy with Figure 6, we present a progression of free-surface wave profiles in 
Figure 8, obtained with F - -  0.7 and the four vortex strengths c = -0 .2 ,  -0 .4 ,  - 0 . 6  and 
-0 .88 .  As I~1 is increased, the downstream wave height first increases, reaching a 
maximum at about c = - 0 . 4 ,  and then decreases almost to zero at c = - 0 . 8 8 .  The 
behaviour of the first wave crest is also of interest. For small I~1, it occurs a short distance 
downstream of the vortex, but as I~1 is increased, its position becomes closer to the y-axis, 
and, unlike the other downstream waves, its height increases uniformly with increasing Icl. 
As Icl continues to increase, we conjecture that a limiting profile will be achieved, which is 
symmetric about the y-axis and has a sharp crest enclosing a 120 ° angle, and which 
possesses no waves and consequently has no wave drag. Solutions for larger values of [c[ 
would not be possible. 

6. Summary and discussion 

The non-linear problem of free-surface flow about a point vortex immersed in a running 
stream of infinite depth has been solved by an efficient numerical method which employs 
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only values of the dependent variables at the surface. Formulae have been derived for the 
drag and lift forces acting on the vortex, and are easily evaluated once the solution of the 
free-surface problem has been obtained. 

Non-linear solutions have been obtained both for positive and for negative circulation 
at the vortex. When the circulation is positive, the free surface possesses a depression 
slightly downstream of the vortex, followed by a train of Stokes waves to infinity. The 
steepness and mean free-surface elevation of these waves are both increasing functions of 
the vortex strength, whilst the wavelength decreases as the vortex becomes stronger. For 
each value of the Froude number, there is some maximum vortex strength for which 
solutions exist, corresponding to the formation of sharp-crested waves downstream and 
the onset of wave breaking. 

When the circulation about the vortex is negative, the free surface generally consists of 
an initial elevation downstream followed by a semi-infinite train of Stokes waves. As the 
vortex strength is increased, the amplitude of the downstream waves and the drag both 
increase initially, but then decrease  again essentially to zero. For each Froude number, 
some maximum permissible vortex strength is believed to exist, at which the wave drag is 
precisely zero, and the free surface is wave-free, symmetrical upstream and downstream, 
and possesses a sharp crest enclosing an angle of 120 ° directly above the vortex. Work is 
currently in progress to attempt to obtain these drag-free solutions by the method of 
Forbes [16]. 

The apparent existence of drag-free non-linear solutions in the case of negative 
circulation may be of relevance to the design of underwater craft, since substantial drag 
reduction might be achieved by inducing negative circulation about the craft, perhaps by 
placing water-jets on its surface. In addition, such a vehicle would be difficult to detect 
visually, due to its absence of a downstream wave train. Of course, flow about real 
submarines is a three-dimensional phenomenon and is affected by viscosity through the 
formation of a boundary-layer and wake; nevertheless, an experimental investigation of 
such craft may prove profitable. 
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